

Examples of the Value of Full Tensor Magnetic Gradiometry (QMAGT)

Authors: Ryan Olson (Dias Airborne), Jonathan Rudd (Dias Geophysical)

QMAG^T – Full Tensor Magnetic Gradiometry (FTMG) Measured with Superconducting Quantum Interference Devices

QMAG^T – Full Tensor Magnetic Gradiometery (FTMG) Measured with Superconducting Quantum Interference Devices

Measured Tensor Components

Calculated

- Tensor Invariants I¹ & I²
- Total Horizontal Curvature (THC)
- Total Horizontal Gradient (THG)
- Calculated Total Magnetic Intensity (TMI)

SQUID Gradiometer

- Helium Cooled Superconducting Quantum Interference Device
 - 4.2 Kelvin
- 6 channels of first order planar gradiometers
 - Intrinsic noise: <100 fT / (m \sqrt{Hz})
- 4 channels of magnetometers
 - Intrinsic noise: 2 pT / \sqrt{Hz}

FTMG Processing

- Time synchronization (SQUID, GPS, IMU data)
- Mechanical processing:
 - GPS post-processing -> track/location
 - IMU processing -> Euler angles
- Magnetometer:
 - Calibration using HDGM, Euler angles and GPS track
- Gradiometer processing:
 - Corrections for flux jumps
 - Balancing using magnetometer data -> denoised gradiometer signals
 - Unmix tensor components -> tensor components in body system
 - Rotation into ECEF using Euler angles -> tensor components in ECEF
 - Compensation for denoising
 - Brid mapping various options
 - Tensor consistent micro-levelling
 - Noise reduction
 - Calculate TMI from magnetometer/tensor components etc.

THAT A STATEMENT

FTMG Processing

- Time synchronization (SQUID, GPS, IMU data)
- Mechanical processing:
 - GPS post-processing -> track/location
 - IMU processing -> Euler angles
- Magnetometer:
 - Calibration using HDGM, Euler angles and GPS track
- Gradiometer processing:
 - Corrections for flux jumps
 - Balancing using magnetometer data -> denoised gradiometer signals
 - Unmix tensor components -> tensor components in body system
 - Rotation into ECEF using Euler angles -> tensor components in ECEF
 - Compensation for denoising
 - Brid mapping various options
 - Tensor consistent micro-levelling
 - Noise reduction
 - Calculate TMI from magnetometer/tensor components etc.

Case Studies:

- Ni-Cu-PGE Sudbury Basin Ontario
- Ni-Cu-Co Murchison HPM Project Quebec
- Lithuim LCT Pegmatites
- Iron Ore Blötberget Sweden

- SIC contact hosted mineralization
- Northern Lens ~50 m depth, South lenses ~300-500 m
- Dip ~50° to the East

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Вуу
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

Analogous to traditional Total Field 1VD

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Вуу
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Вуу
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

POWERED BY Supracan'

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Вуу
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

$$I_{1} = \sqrt{\frac{1}{2} trace\left(\widehat{B_{ik}}^{2}\right)}$$

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

 $I_2 = \sqrt[3]{det(\widehat{B_{ik}})}$

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Byy
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

- Client Provided (100 m line-spacing)
 - Measured TMI
 - Calculated 1VD
- QMAG^T Survey (75 m line-spacing)
 - Calculated TMI
 - Bzz
 - Bxx
 - Bxy
 - Bxz
 - Вуу
 - Byz
 - Rotational Invariants:
 - 11
 - 12
 - THC Total Horizontal Curvature
 - THG Total Horizontal Gradient

Case Studies:

- Ni-Cu-PGE Sudbury Basin Ontario
- Ni-Cu-Co Murchison HPM Project Quebec
- Lithuim LCT Pegmatites
- Iron Ore Blötberget Sweden

- Adjacent to the Manicouagan impact structure
- Mafic magma intruded sulphide-bearing metasedimentary rock
- Barre de Fer Zone:
 - Surface showings
 - Confirmed at depths up to 475m
 - Mineralization currently defined by extensive and ongoing drilling.

Used with permission: https://murchisonminerals.ca/projects/hpm-project/

- Large section of the project area flown with QMAG^T
- Approximately 510 line-kms
- 75 m & 50 m line-spacing
- Average 55m above ground

- Large section of the project area flown with QMAG^T
- Approximately 510 line-kms
- 75 m & 50 m line-spacing
- Average 55m above ground
- Barre de Fer zone (Shown)

- Large section of the project area flown with QMAG^T
- Approximately 510 line-kms
- 75 m & 50 m line-spacing
- Average 55m above ground
- Barre de Fer zone (Shown)

- Large section of the project area flown with QMAG^T
- Approximately 510 line-kms
- 75 m & 50 m line-spacing
- Average 55m above ground
- Barre de Fer zone (Shown)

- Large section of the project area flown with QMAG^T
- Approximately 510 line-kms
- 75 m & 50 m line-spacing
- Average 55m above ground
- Barre de Fer zone (Shown)

• Barre de Fer mineralization intersections overlain on VTEM Conductivity

Used with permission: https://murchisonminerals.ca/projects/hpm-project/

QMAGT Survey Results over the Barre de Fer zone

Strong magnetic signature correlating to the sulphide intrusion and VTEM Conductivity High

Case Studies:

- Ni-Cu-PGE Sudbury Basin Ontario
- Ni-Cu-Co Murchison HPM Project Quebec
- Lithuim LCT Pegmatites
- Iron Ore Blötberget Sweden

- Branching Pegmatite Branching Dyke Swarm
- LCT pegmatites at LNPG do not have a particularly strong magnetic response
- High sensitivity of the SQUID and resolution of the full tensor measurement should provide the best-case scenario for detection.
- Survey incomplete at the writing of this presentation.

Used with permission: https://www.lakewinn.ca/properties/

• Byy tensor component overlaid on formational geology

• Byz tensor component overlaid on formational geology

POWERED BY Supracan'

- Byz tensor component overlaid on formational geology
- Subtle magnetic lineation in Byz, in line with the mapped Dyke swarm that may be indicative of continuation down strike (red)
- Strong magnetic lineation likely related to the boundary between the Narchilla / Yusezyu Formations, yet to be explained geologically in the scope of this project (Black)

Used with permission: https://www.lakewinn.ca/properties/

Case Studies:

- Ni-Cu-PGE Sudbury Basin Ontario
- Ni-Cu-Co Murchison HPM Project Quebec
- Lithuim LCT Pegmatites
- Iron Ore Blötberget Sweden

Case Study: Iron Ore Sweden – Blötberget Project

- Simplified geology shown
- QMAG^T survey lines are thin blue 100 m spacing.
- QAMT lines are black 300 m.

Case Study: Iron Ore

QMAG^T Tensor component images

Case Study: Iron Ore

MVI inversion models comparing results with and without TMI

Case Study: Iron Ore – QAMT Transfer functions

Future Development

- QAMT 3-Component SQUID Magnetometer for AMT/CSAMT/EM
- Combined QMAG^T Full Tensor Magnetic Gradiometry incorporating the QAMT SQUID magnetometer for balancing and simultaneous collection of passive AMT.

Applications

Current Exploration Environments

- Atypical Kimberlite Detection
- Iron Ore
- Lithium LCT Pegmatites
- Ni-Cu-Co/PGE

Interpretation

- Structural analysis
- Joint Inversion
 - Technolmaging
 - Mira Geoscience
- Remanent magnetisation analysis
- Depth Estimation, Susceptibility & Apparent Resultant Rotation Angle
 - Tensor Research

Acknowledgement

LEADING GROUND AND AIRBORNE GEOPHYSICAL

