

"The ability of the QMAG^T system to detect very weak magnetic signals, and image complex directional patterns is very important to exploration for this type of challenging target."

PROJECT LITTLE NAHANNI PEGMATITE PROJECT Lake Winn Resources Little Nahanni, NT, Canada

TECHNOLOGY DIAS QMAG^T Airborne Full-Tensor Magnetic Gradiometry

Little Nahanni Pegmatite Project, NT, Canada

SITUATION

Dias' QMAG^T system completed a survey over Lake Winn Resources' 100% owned Little Nahanni Pegmatite project in the Northwest Territories. The project covers 7,080 hectares that encompasses a 7 km long, and up to 500 m wide, lithium, tantalum, and tin pegmatite dyke swarm. Historical drilling and channel sampling on the Project confirms the presence of significant Lithium, Tantalum, Tin, and Cesium.

Historic drilling and channel sampling has proven numerous intervals of mineralized pegmatite grading >1% LiO2 over 1 m to 16.65 m intervals. Lake Winn reports that they believe that the QMAG^T system has successfully mapped the LCT pegmatite dyke swarm. Anomalies coinciding with the known dykes appear to coalesce into numerous larger anomalies which range from 10 m to 100 m widths and can be intermittently traced along strike for up to 7 km. The QMAG^T results are being integrated with other data sets to accelerate exploration through the project area.

QMAG^T System

The QMAG^T system is a helicopter-borne magnetic survey system utilizing a SQUID (superconducting quantum interference device) sensors that measure the complete gradient tensor of the Earth's magnetic field. The SQUID system was developed by Supracon AG of Jena, Germany. Operating within a liquid helium bath, the sensors measure the magnetic gradients with great sensitivity. The survey delivers 6 tensor components, each of which highlights different magnetic directions in the survey area.

QMAG^T Results and Interpretation

Figure 1 shows a colour image of the Bzz data

Figure 1: Bzz tensor image (measured vertical gradient of the vertical component) flown over the central portion of the LNPG project. Historic drilling is shown in white. Colours are reversed with low magnetic response in reds and high magnetic response in blue.

channel from the survey. The colour palette is reverse, so the zones of low gradient are the "hot" red colors and the high gradients are the cold colours (blue). The current thinking is that the LCT pegmatites have very little magnetic response, so they should image as zones of low gradient. However, when they were intruded into the surrounding sandstones, a hornfels was formed causing the relatively high vertical gradient response. Therefore, the red colors (magnetic low response) is thought to map directly the LCT pegmatite dykes. This is an exciting result.

The other QMAG^T tensor images (like Bxy, not shown) support this interpretation with coincident anomalies matching the linear features in the Bzz image. The results show a dense swarm of pegmatites, tens of metres across near the northern drill holes. Drill hole MAC06 encountered 17.96 m of LCT pegmatite grading 1.03% LiO2 and drill MAC07 drilled from

target LITHIUM

the same site at a 60° dip encountered 10.94 m of LCT pegmatite grading 1.47% LiO2 (Figure 2). Figure 1 also illustrates an 80 m to 100 m wide magnetic signature that traverses the entire data set for several kilometers. This anomaly has been named Alpha Prime. Close inspection of nearby historic collars suggest they drilled near, but did not test this target. Lake Winn plans to ground truth these anomalies in the summer of 2023.

Figure 2 illustrates the northern part of the surveyed area, around drill holes MAC 06 and 07, as a reverse-colored image and overlain by topographic contours. The interpreted LCT pegmatite dykes have been traced out with lines of white dots. They seem to get cut-off by the cirques, but Lake Winn knows from mapping that they persist in the cliff faces of the cirques. The apparent cut-off in the magnetic imaging is caused by the loss of sensitivity due to the increased height of the sensor. Signal drops off more rapidly with increased flight height because it is a gradient system. On the upper plateau, a swarm of anastomosing dykes can be interpreted, including the dyke that was sampled by drill holes MAC 06 & 07. This magnetic data will aid in guiding further drilling across these target pegmatites.

The concept that the Alpha Prime target is part of the LCT pegmatite swarm is supported by soil sampling undertaken in the south end of the property in 2006 and 2007.

The concept that the Alpha Prime target is part of the LCT pegmatite swarm is supported by soil sampling undertaken in the south end of the property in 2006 and 2007.

Figure 3 shows the sampling results in relation to the Alpha Prime target. The trace of the Alpha Prime anomaly has a strong, coincident Li-in-soil anomaly.

WWW.DIASGEO.COM

- TORONTO
- VANCOUVER
- SASKATOON
 - MEXICO
 - CHILE

Figure 2: A zoomed in view of the Bzz data in reverse colour over the NW portion of the property. Topography contours are shown in black. The red linears are thought to map out the LCT pegmatite dykes.

Figure 3 Southwest portion of the $QMAG^T$ Bzz image in reversed pastel colours, with the Li in soil geo-chem results as colour symbols. The Alpha Prime dyke target is labeled.

CONCLUSIONS

The QMAG^T system appears to be effective in imaging an anastomosing series of LCT pegmatite dykes on Lake Winn Resources' Little Nahanni project. The dykes, as expected, are showing as low magnetic response. Weak magnetic high responses on the sides of these dykes are interpreted to be reflecting hornfels alteration during emplacement of the dykes in the sedimentary host rocks. The ability of the QMAGT system to detect very weak magnetic signals, and image complex directional patterns is very important to exploration for this type of challenging target.

